De novo design of self-assembling peptides with antimicrobial activity guided by deep learning

0
De novo design of self-assembling peptides with antimicrobial activity guided by deep learning
  • Ahnert, S. E. et al. Principles of assembly reveal a periodic table of protein complexes. Science 350, aa2245 (2015).

    Article 

    Google Scholar 

  • Vermeire, P.-J. et al. Molecular interactions driving intermediate filament assembly. Cells 10, 2457 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, G. et al. Precise and reversible protein-microtubule-like structure with helicity driven by dual supramolecular interactions. J. Am. Chem. Soc. 138, 1932–1937 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Imada, K. Bacterial flagellar axial structure and its construction. Biophys. Rev. 10, 559–570 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, Y. & Li, J. Molecular assembly of rotary and linear motor proteins. Accounts Chem. Res. 52, 1623–1631 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chiesa, G., Kiriakov, S. & Khalil, A. S. Protein assembly systems in natural and synthetic biology. BMC Biol. 18, 35 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yolamanova, M. et al. Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nat. Nanotechnol. 8, 130–136 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Münch, J. et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131, 1059–1071 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Kim, J. et al. In situ self-assembly for cancer therapy and imaging. Nat. Rev. Mater. 8, 710–725 (2023).

    Article 

    Google Scholar 

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, J. et al. Cell spheroid creation by transcytotic intercellular gelation. Nat. Nanotechnol. 18, 1094–1104 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, P.-P. et al. Bispyrene-based self-assembled nanomaterials: in vivo self-assembly, transformation, and biomedical effects. Acc. Chem. Res. 52, 367–378 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, J., Zhan, J. & Yang, Z. Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv. Mater. 32, 1805798 (2020).

    Article 
    CAS 

    Google Scholar 

  • Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover. Nat. Chem. 7, 30–37 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, T. Y. et al. Accelerating the prediction and discovery of peptide hydrogels with human-in-the-loop. Nat. Commun. 14, 3880 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batra, R. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 14, 1427–1435 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pirtskhalava, M. et al. DBAASP v.2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucleic Acids Res. 44, D1104–D1112 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pirtskhalava, M. et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 49, D288–D297 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaswani A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems (eds Guyon, I. et al.) 6000–6010 (Curran Associates, 2017).

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article 

    Google Scholar 

  • Xu, Z. J. & Zhou, H. Deep frequency principle towards understanding why deeper learning is faster. In Proc. 35th AAAI Conference on Artificial Intelligence (eds. Leyton-Brown, K. et al.) 10541–10550 (AAAI Press, 2021).

  • Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 1767, 1073–1101 (2007).

    Article 
    CAS 

    Google Scholar 

  • Pavia, D. L. et al. in Introduction to Spectroscopy, 5th edn, 70–71 (Cengage Learning, 2015).

  • Barron, A. R. in Chemistry of the Main Group Elements Ch. 2.7 (Midas Green Innovations, 2014).

  • el Battioui, K. et al. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat. Commun. 15, 3424 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marty, R. et al. Hierarchically structured microfibers of ‘single stack’ perylene bisimide and quaterthiophene nanowires. ACS Nano 7, 8498–8508 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kovacs, J. M., Mant, C. T. & Hodges, R. S. Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest‐neighbor or conformational effects. Biopolymers 84, 283–297 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pane, K. et al. Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: application to the detection of ‘cryptic’ antimicrobial peptides. J. Theor. Biol. 419, 254–265 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopetuso, L. R. et al. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zafar, H. & Saier, M. H. Gut Bacteroides species in health and disease. Gut Microbes 13, 1848158 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, S. H. et al. Multidrug resistant Gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. Transpl. Infect. Dis. 11, 405–412 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Torres, M. D. T. et al. Mining for encrypted peptide antibiotics in the human proteome. Nat. Biomed. Eng. 6, 67–75 (2022).

    Article 
    PubMed 

    Google Scholar 

  • UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article 

    Google Scholar 

  • LeCun, Y. et al. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar 

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cho, K. et al. On the properties of neural machine translation: encoder–decoder approaches. In Proc. 8th Workshop on Syntax, Semantics and Structure in Statistical Translation (eds Wu, D. et al.) 103–111 (ACL, 2014).

  • Schuster, M. & Paliwal, K. K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673–2681 (1997).

    Article 

    Google Scholar 

  • Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations (ICLR, 2015).

  • Needleman, S. B. & Wunsch, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abadi, M. et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. In Proc. USENIX Conference on Operating Systems Design and Implementation (eds Keeton, K. et al.) 265–283 (USENIX, 2016).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR, 2015).

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  • Cock, P. J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H., Song, Z., Huang, J. & Wang, H. Data archive for: “De novo design of self-assembling peptides with antimicrobial activity guided by deep-learning”. Science Data Bank (2024).

  • Liu, H., Song, Z., Huang, J., & Wang, H. Source codes repository for the model TransSAFP. GitHub (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *